AQA

Please write clearly in block capitals.

Centre number \square Candidate number

Surname
Forename(s)
Candidate signature
I declare this is my own work.

Level 2 Certificate FURTHER MATHEMATICS

Paper 1 Non-Calculator

Time allowed: 1 hour 45 minutes

Materials

For this paper you must have:

- mathematical instruments
- the Formulae Sheet (enclosed).

You must not use a calculator.

Instructions

- Use black ink or black ball-point pen. Draw diagrams in pencil.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

For Examiner's Use	
Pages	Mark
$2-3$	
$4-5$	
$6-7$	
$8-9$	
$10-11$	
$12-13$	
$14-15$	
$16-17$	
$18-19$	
TOTAL	

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80.
- You may ask for more graph paper and tracing paper.

These must be tagged securely to this answer book.

$$
3 \text { (a) } \quad \begin{aligned}
\mathrm{f}(x) & =4-x & & 0 \leqslant x<1 \\
& =4 x-x^{2} & & 1 \leqslant x<4 \\
& =2 x-8 & & 4 \leqslant x \leqslant 6
\end{aligned}
$$

On the grid, draw the graph of $\quad y=\mathrm{f}(x)$

3 (b) $\mathrm{g}(x)=6-3 x$
Work out $\mathrm{g}^{-1}(x)$.

4 (a) Circle the value of $\tan ^{2} 30^{\circ}$
$\frac{1}{4}$
$\frac{1}{3}$
$\frac{1}{2}$

4 (b) On the axes, sketch

$$
y=\cos x \quad \text { for } \quad 0^{\circ} \leqslant x \leqslant 360^{\circ}
$$

$5(3 x+a)(5 x-4) \equiv 15 x^{2}-2 x+b$
Work out the values of a and b.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$$
a=
$$

\qquad $b=$ \qquad
$6 \quad y=2 x^{4}\left(x^{3}+2-\frac{3}{x}\right)$
Work out $\frac{\mathrm{d} y}{\mathrm{~d} x}$
\qquad
\qquad
\qquad
\qquad
\qquad

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=
$$

\qquad
$A B C$ is a right-angled triangle with vertices $A(-1,5), B(-2,5)$ and $C\left(-1,5 \frac{3}{4}\right)$
Work out the length of $B C$.

Answer units

8 Use matrix multiplication to show that, in the $x-y$ plane,

- a rotation, 90° anticlockwise about the origin, followed by
- a reflection in the line $y=x$
is equivalent to a reflection in the x-axis.

| 9 (a) | A quadratic sequence starts | -2 | -1 | 4 | 13 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | Work out an expression for the nth term. | | | | |

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer

9 (b) A different quadratic sequence has nth term $n^{2}+10 n$
Use an algebraic method to work out how many terms in the sequence are less than 2000

Do not use trial and improvement.
You must show your working.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer \qquad

12 The nth term of a sequence is $\frac{3 n^{2}}{n^{2}+2}$
12 (a) One term in the sequence is $\frac{32}{11}$
Work out the value of n.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer

12 (b) Write down the limiting value of the sequence as $n \rightarrow \infty$
\qquad
\qquad

Answer \qquad

13 | Simplify fully $\left(6 x^{3} y^{-2}+9 x^{5} y\right) \div 3 x^{2} y^{-3}$ |
| :--- |
| Answer |
| Answer |

$15 \quad B, C$ and D are points on a circle, centre P. $A B$ and $A C$ are tangents to the circle.

Not drawn accurately

Prove that $\quad y=90+\frac{x}{2}$
\qquad

16 Solve the simultaneous equations

$$
\begin{aligned}
& x-y=\frac{19}{4} \\
& x y=-3
\end{aligned}
$$

Do not use trial and improvement.
You must show your working.
\qquad

Answer \qquad

17 The point P lies on the circle $\quad x^{2}+y^{2}=16$ The line $O P$ is at an angle of 60° to the positive x-axis.

Not drawn accurately

17 (a) Show that the coordinates of point P are $(2,2 \sqrt{3})$
\qquad
\qquad
\qquad
\qquad

[^0]\qquad
\qquad

Answer \qquad

Turn over for the next question

18 In triangle $R S T \quad R S: S T=1: 4$

Not drawn accurately

Work out the exact value of $\sin \theta$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer \qquad
19 Write $6 x^{2}-24 x+17$ in the form $a(x+b)^{2}+c \quad$ where a, b and c are integers.
\qquad

Answer

Turn over for the next question

Work out the coordinates of the three stationary points and determine their nature.
You must show your working.
\qquad
Stationary point (\qquad , \qquad) Nature \qquad
Stationary point (\qquad , \qquad) Nature
Stationary point (\qquad , \qquad) Nature \qquad
$21 \quad$ Show that $\frac{4 \cos ^{2} x+3 \sin ^{2} x-4}{\cos ^{2} x} \equiv-\tan ^{2} x \quad$ [3 marks]
\qquad

END OF QUESTIONS

Do not write

For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessfu and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.

Copyright © 2022 AQA and its licensors. All rights reserved.

[^0]: 17 (b) Work out the equation of the tangent to the circle at P.
 Write your answer in the form $\quad x+a y=b \quad$ where a and b are constants.

